NSW Y12 Maths - Advanced Graphs and Equations Curve Sketching

Resources for Curve Sketching

  • Questions

    7

    With Worked Solution
    Click Here
  • Video Tutorials

    1


    Click Here
  • HSC Questions

    2

    With Worked Solution
    Click Here

Curve Sketching Theory

Curve sketching requires all the information that has been stated in the question to appear on the sketch.\\  \begin{multicols}{2}  \textbf{Example 1}\\ Sketch the curve \(y=x^3-6 x^2+9 x+5\) showing the coordinates of maximum and minimum turning points, coordinates of points of inflexion and the intercept on the \(y\)-axis.\\  \textbf{Example 1 solution}\\ $\begin{aligned} & y=x^3-6 x^2+9 x+5 \\ & y^{\prime}=3 x^2-12 x+9 \\ & y^{\prime \prime}=6 x-12 \end{aligned}$\\  $\begin{aligned} \text { Let } y^{\prime}=0 \quad &3 x^2-12 x+9=0 \\ &x^2-4 x+3=0 \\ &(x-3)(x-1)=0 \\ &\therefore x=3 \text { or } x=1 \end{aligned}$\\  $\begin{aligned} \text { At } x=3 \quad &y  =3^3-6 \times 3^2+9 \times 3+5 \\ &y  =5 \\ \text { At } x=1 \quad   &y=1^3-6 \times 1^2+9 \times 1+5 \\ &y  =9 \end{aligned}$\\  At \(x=3 \quad y^{\prime \prime}>0 \quad \therefore(3,5)\) is a minimum stationary point.\\ At \(x=1 \quad y^{\prime \prime}<0 \quad\therefore(1,9)\) is a maximum stationary point.\\  Let \(y^{\prime \prime}=0\)\\  $\begin{aligned} 6 x-12  =0& \\ x  =2& \quad y=2^3-6 \times 2^2+9 \times 2+5 \\ &\quad y  =7 \end{aligned}$\\   \columnbreak \textbf{Solution continued}\\ \(\therefore(2,7)\) is a point of inflexion as it lies between a maximum and a minimum turning point.\\  At \(x=0 \quad y=5\)\\  \(\therefore(0,5) \text { is the y-intercept. }\)\\  \begin{center} \begin{tikzpicture}[         declare function={a(\x)=(\x)^3-6*\x^2+9*\x+5;},     ] \def \domain{-0.47:4.43}  \def \xmax{6} \def \xmin{-3} \def \ymax{14} \def \ymin{-1} \def \xlabel{x} \def \ylabel{y}  \begin{axis}[         axis lines=middle,         axis line style={Stealth-Stealth,very thick},         grid=both, %major,         ylabel = $\ylabel$,         xlabel = $\xlabel$,         width=3.8in, height=3.5in,         ymin=\ymin, ymax=\ymax,         xmin=\xmin, xmax=\xmax,         minor x tick num=1,         minor y tick num=1,         axis line style = thick,         major tick style = thick,         minor tick style = thick,         xtick distance = 1,         xlabel style={right},         ytick distance = 2,         ylabel style={above},         x grid style={thin, opacity=0.8},         y grid style={thin, opacity=0.8},         axis on top=false,         xtick={-3,...,6},         ytick={-2,0,2,4,...,14},  %       extra x ticks={0},         extra x tick style={xticklabel style={anchor=north east}}     ] %FUNCTION \draw [draw=black,thin, opacity=0.5] (\xmin,\ymin) rectangle (\xmax,\ymax); \addplot[name path=a, ultra thick, latex-latex, samples=300, smooth, domain=\domain, red] {a(x)}  node [pos=0.9, left, red, font=\small] {}; \node (11) at (1,9) {}; \node (33) at (0,5) {}; \node (22) at (3,5) {}; \node (44) at (2,7) {}; \node (1) [draw ,rectangle, align=center,fill=gray!20] at (-0.6,2) { Local Maximum\\ \((1,9)\)}; \node (2) [draw ,rectangle, align=center,fill=gray!20] at (4,2) { Local Minimum\\ \((3,5)\)}; \node (3) [draw ,rectangle, align=center,fill=gray!20] at (-1.5,10) {\(y\) Intercept\\\((0,5)\)}; \node (4) [draw ,rectangle, align=center,fill=gray!20] at (3,11.5) {Point of Inflection\\ \((2,7)\)}; \end{axis} \path[draw,-stealth,font=\ttfamily,line width = 0.5mm] (1)--(11); \path[draw,-stealth,font=\ttfamily,line width = 0.5mm] (2)--(22); \path[draw,-stealth,font=\ttfamily,line width = 0.5mm] (3)--(33); \path[draw,-stealth,font=\ttfamily,line width = 0.5mm] (4)--(44); \end{tikzpicture} %\includegraphics[width=0.45\textwidth]{Picture100} \end{center}  \end{multicols}

Create account

I am..

Please enter your details

I agree with your terms of service




Videos

Videos relating to Curve Sketching.

  • Curve Sketching - Video - Graphing using derivatives | Derivative applications | Differential Calculus

    You must be logged in to access this resource

Plans & Pricing

With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.

  • Teachers Tutors
    Features
    Free
    Pro
    All Content
    All courses, all topics
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Quizbuilder
     
    Class Results
     
    Student Results
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions
  • Awesome Students
    Features
    Free
    Pro
    Content
    Any course, any topic
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Basic Results
     
    Analytics
     
    Study Recommendations
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions