NSW Y12 Maths - Advanced Exponential and Log Function Exponential Functions

Resources for Exponential Functions

  • Questions

    14

    With Worked Solution
    Click Here
  • Video Tutorials

    1


    Click Here

Exponential Functions Theory

This subtopic is a revision of the subtopics in the year ll course. \\  The solutions of exponential equations, the equations of tangents to exponential functions and transformations of exponential functions will be covered.\\  \begin{multicols}{2}  \textbf{Example 1}\\ %24073 Solve \(2{e^x} = {e^{2x}}\)\\  \textbf{Example 1 solution}\\ $\begin{array}{c} 2 e^{x}=e^{2 x} \\ \operatorname{let} y=e^{x} \\ 2 y=y^{2} \\ y^{2}-2 y=0 \\ y(y-2)=0 \\ y=0, y=2 \\ e^{x}=0 \quad(\text { no solution }) \\ e^{x}=2 \rightarrow x=\ln 2 \end{array}$\\  \columnbreak \textbf{Example 2} %24700 \begin{itemize} \item[\bf{i)}]What is the \(y\) - intercept of the point \(P\) on the curve \(y = {e^{2x}} + 1\) \item[\bf{ii)}]Find \(\dfrac{{dy}}{{dx}}\) for this curve where \(x = 1\) \item[\bf{iii)}]Find the equation of the tangent to this curve \end{itemize}  \textbf{Example 2 solution}\\ $\begin{aligned} \textbf{i)}\quad &y=e^{2 x}+1\\ &\text{At}\ x=0,\ y=e^{0}+1 \rightarrow\left(0, 2\right)\\ \textbf{ii)}\quad &\frac{d y}{d x}=2 e^{2 x}+1\\ &\text{At}\ x=1, \frac{d y}{d x}=2 e^{2}+1\\ \textbf{iii)}\quad &y-\left(e^{2}+1\right)=\left(2 e^{2}+1\right)(x-1) \\ &y-e^{2}-1=\left(2 e^{2}+1\right) x-2 e^{2}-1 \\ &y=\left(2 e^{2}+1\right) x-e^{2} \end{aligned}$\\  \end{multicols}

Create account

I am..

Please enter your details

I agree with your terms of service




Videos

Videos relating to Exponential Functions.

  • Exponential Functions - Video - Graphing Exponential Functions: Another Example

    You must be logged in to access this resource

Plans & Pricing

With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.

  • Teachers Tutors
    Features
    Free
    Pro
    All Content
    All courses, all topics
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Quizbuilder
     
    Class Results
     
    Student Results
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions
  • Awesome Students
    Features
    Free
    Pro
    Content
    Any course, any topic
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Basic Results
     
    Analytics
     
    Study Recommendations
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions