Resources for Exponential Functions
-
Questions
14
With Worked SolutionClick Here -
Video Tutorials
1
Click Here
Exponential Functions Theory
![This subtopic is a revision of the subtopics in the year ll course. \\ The solutions of exponential equations, the equations of tangents to exponential functions and transformations of exponential functions will be covered.\\ \begin{multicols}{2} \textbf{Example 1}\\ %24073 Solve \(2{e^x} = {e^{2x}}\)\\ \textbf{Example 1 solution}\\ $\begin{array}{c} 2 e^{x}=e^{2 x} \\ \operatorname{let} y=e^{x} \\ 2 y=y^{2} \\ y^{2}-2 y=0 \\ y(y-2)=0 \\ y=0, y=2 \\ e^{x}=0 \quad(\text { no solution }) \\ e^{x}=2 \rightarrow x=\ln 2 \end{array}$\\ \columnbreak \textbf{Example 2} %24700 \begin{itemize} \item[\bf{i)}]What is the \(y\) - intercept of the point \(P\) on the curve \(y = {e^{2x}} + 1\) \item[\bf{ii)}]Find \(\dfrac{{dy}}{{dx}}\) for this curve where \(x = 1\) \item[\bf{iii)}]Find the equation of the tangent to this curve \end{itemize} \textbf{Example 2 solution}\\ $\begin{aligned} \textbf{i)}\quad &y=e^{2 x}+1\\ &\text{At}\ x=0,\ y=e^{0}+1 \rightarrow\left(0, 2\right)\\ \textbf{ii)}\quad &\frac{d y}{d x}=2 e^{2 x}+1\\ &\text{At}\ x=1, \frac{d y}{d x}=2 e^{2}+1\\ \textbf{iii)}\quad &y-\left(e^{2}+1\right)=\left(2 e^{2}+1\right)(x-1) \\ &y-e^{2}-1=\left(2 e^{2}+1\right) x-2 e^{2}-1 \\ &y=\left(2 e^{2}+1\right) x-e^{2} \end{aligned}$\\ \end{multicols}](/media/pyxiddsq/4778.png)
14
With Worked Solution1
Videos relating to Exponential Functions.
With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.