NSW Y12 Maths - Advanced Exponential and Log Function Calculus with other Bases

Resources for Calculus with other Bases

  • Questions

    11

    With Worked Solution
    Click Here
  • Video Tutorials

    1


    Click Here

Calculus with other Bases Theory

Calculus with other bases in logarithmic and exponential functions require differentiation and integration concepts.\\  \begin{multicols}{2}  \textbf{Differentiation:}  $\begin{aligned} & y=\log _a f(x) \\ & y=\frac{\ln f(x)}{\ln a} \rightarrow \frac{d y}{d x}=\frac{1}{\ln a} \times \frac{f^{\prime}(x)}{f(x)} \end{aligned}$\\  \columnbreak  \textbf{Integration:}  $\begin{aligned} y & =a^x \\ x & =\log_a y \\ & =\frac{\ln y}{\ln a} \text { (change of base) } \\ \ln y & =x \ln a \\ y & =e^{x \ln a}=a^x \\ y^{\prime} & =\ln a e^{x \ln a} \\ & =\ln a a^x \\ &\therefore \displaystyle \int \ln a a^x d x  =a^x \\ & \displaystyle \int a^x d x=\frac{1}{\ln a} a^x \end{aligned}$\\  \end{multicols}  \begin{multicols}{2}  \textbf{Example 1}\\ %10652 Find the equation of the normal to the curve \(y = \log_5(x + 1)\) at \(x= 0\) \\  \textbf{Example 1 solution}\\ $\begin{aligned} y &=\log _{5}(x+1) \\ &=\frac{\log _{e}(x+1)}{\log _{e} 5} \\ y^{\prime} &=\frac{1}{\log _{e} 5(x+1)}\\ \text{At } x=0 \quad y^{\prime}&=\frac{1}{\log_e {5}}\\ M_{N}&=-\log _{e} 5\\ y-0&=-\log_e 5 (x-0)\\ y&=(-\log _{e} 5) x \end{aligned}$\\  \columnbreak \textbf{Example 2}\\ \(\displaystyle \int_1^2 5^x \,d x=?\)\\  \textbf{Example 2 solution}\\ $\begin{aligned} \displaystyle\int_1^2 5^x d x & =\frac{1}{\ln 5}\left[5^x\right]_1^2 \\ & =\frac{1}{\ln 5}\left[5^2-5\right] \\ & =\frac{20}{\ln 5} \end{aligned}$\\  \end{multicols}

Create account

I am..

Please enter your details

I agree with your terms of service




Videos

Videos relating to Calculus with other Bases.

  • Calculus with other Bases - Video - Derivative of log with arbitrary base

    You must be logged in to access this resource

Plans & Pricing

With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.

  • Teachers Tutors
    Features
    Free
    Pro
    All Content
    All courses, all topics
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Quizbuilder
     
    Class Results
     
    Student Results
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions
  • Awesome Students
    Features
    Free
    Pro
    Content
    Any course, any topic
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Basic Results
     
    Analytics
     
    Study Recommendations
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions