NSW Y12 Maths - Advanced Differential Calculus Sign of the Derivative

Resources for Sign of the Derivative

  • Questions

    13

    With Worked Solution
    Click Here
  • Video Tutorials

    1


    Click Here

Sign of the Derivative Theory

For a given function \(y=f(x)\) if \(\dfrac{d y}{d x}>0\) in a given domain \(a<x<b\) then the function is increasing in that domain.\\  Conversely if \(\dfrac{d y}{d x}<0\) then the function is decreasing in that domain.\\  \textbf{Example}\\ Find the values of \(x\) for which the curve \(y=x^3+12 x^2+45 x-30\) is \begin{itemize} \item[\bf{i)}]increasing \item[\bf{ii)}]decreasing \end{itemize}  \textbf{Solution}\\ $\begin{aligned}  \text { (i) }\quad  y&=x^3+12 x^2+45 x-30 \\  \frac{d y}{d x}&=3 x^2-24 x+45 \end{aligned}$\\  $ \begin{aligned} \text { For }\frac{d y}{d x}>0 \quad  3 x^2-24 x+45&>0 \\  x^2-8 x+15&>0 \\  (x-3)(x-5)&>0 \\ \therefore  x<3 \cup x>5 \quad &\text { the curve increases. } \end{aligned}$\\  (ii) For \(3<x<5\) the curve decreases\\

Create account

I am..

Please enter your details

I agree with your terms of service




Videos

Videos relating to Sign of the Derivative.

  • Sign of the Derivative - Video - Increasing and Decreasing Functions

    You must be logged in to access this resource

Plans & Pricing

With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.

  • Teachers Tutors
    Features
    Free
    Pro
    All Content
    All courses, all topics
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Quizbuilder
     
    Class Results
     
    Student Results
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions
  • Awesome Students
    Features
    Free
    Pro
    Content
    Any course, any topic
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Basic Results
     
    Analytics
     
    Study Recommendations
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions