NSW Y12 Maths - Advanced Differential Calculus Primitive Functions

Resources for Primitive Functions

  • Questions

    17

    With Worked Solution
    Click Here
  • Video Tutorials

    1


    Click Here

Primitive Functions Theory

Finding a primitive function is the reverse of differentiating a function.\\  when finding a primitive function (integrating) from a given function, it is important to include the constant '\(c\)' and in some cases determine the value of '\(c\)'.\\  \textbf{Example}\\ %17220 The gradient of the tangent to a curve is given by \(\dfrac{{dy}}{{dx}} = 4 - 6x\) and the curve passes through the point \((-1,1)\). The equation of the curve is?\\  \textbf{Solution}\\ $\begin{aligned} \frac{d y}{d x} &=4-6 x \\ y &=4 x-6 \frac{x^{2}}{2}+c \\ y &=4 x-3 x^{2}+c \\ \text { At }\ (-1,1)\ \ 1&=-4-3+c \\ c&=8\\ \therefore\ y&=-3 x^{2}+4 x+8 \end{aligned}$\\

Create account

I am..

Please enter your details

I agree with your terms of service




Videos

Videos relating to Primitive Functions.

  • Primitive Functions - Video - Primitive Functions

    You must be logged in to access this resource

Plans & Pricing

With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.

  • Teachers Tutors
    Features
    Free
    Pro
    All Content
    All courses, all topics
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Quizbuilder
     
    Class Results
     
    Student Results
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions
  • Awesome Students
    Features
    Free
    Pro
    Content
    Any course, any topic
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Basic Results
     
    Analytics
     
    Study Recommendations
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions