NSW Y12 Maths - Advanced Differential Calculus Applications of Maxima and Minima

Resources for Applications of Maxima and Minima

  • Questions

    19

    With Worked Solution
    Click Here
  • Video Tutorials

    2


    Click Here
  • HSC Questions

    10

    With Worked Solution
    Click Here

Applications of Maxima and Minima Theory

There are two types of applications of maxima and minima questions. For the easier question you are given a function that requires you to determine the maximum or minimum value. \\  The harder question requires you to derive a function which then requires you to determine the maximum or minimum value.\\  \textbf{Example}\\ An open rectangular box has four sides and a base, but no lid, as in the figure.\\ \begin{center} \begin{tikzpicture} \def\l{3} \def\w{1} \def\h{1.2}  \coordinate (A) at (0,0,0);  \coordinate (B) at (\l,0,0) ; \coordinate (C) at (\l,\w,0);  \coordinate (D) at (0,\w,0);  \coordinate (E) at (0,0,\h);  \coordinate (F) at (\l,0,\h);  \coordinate (G) at (\l,\w,\h);  \coordinate (H) at (0,\w,\h);  %Ecken \node[left= 1pt of A]{}; \node[right= 1pt of B]{}; \node[right= 1pt of C]{}; \node[left= 1pt of D]{}; \node[left= 1pt of E]{}; \node[right= 1pt of F]{}; \node[right= 1pt of G]{}; \node[left= 1pt of H]{};  %Kanten \draw[] (A)  -- (B)  node[midway, below]{} -- (C)      node[midway, right]{} -- (D)  node[midway, above]{} -- (A)  node[midway, left]{}; \draw[] (B) -- (F) -- (G) -- (C); \draw[] (G) -- (H) -- (D); \draw[] (A) -- (E)-- (F)  node[midway,below]{\(\tiny 3x\)}; \draw[] (E) -- (H); \path (F)--(B) node[midway,below right]{\(\tiny x\)}; \path (B)--(C) node[midway,right]{\(\tiny y\)}; \path[draw,fill=gray!10!white] (E)--(F)--(G)--(H)--cycle; \path[draw,fill=gray!10!white] (F)--(B)--(C)--(G)--cycle; \end{tikzpicture}  %\includegraphics[width=0.3\textwidth]{72542003-46c9-41b7-b8be-06d7096b0c23} \end{center} The dimensions of the base are: length \(3x \) cm, width \(x \) cm and height \(y\) cm \begin{itemize} \item[\bf{i)}]Given that the surface area of the box is \(120c{m^2}\) show that \(y = \dfrac{{120 - 3{x^2}}}{{8x}}\) \item[\bf{ii)}]Show that the volume of the box is \(V = 9x\left( {5 - \dfrac{{{x^2}}}{8}} \right)\) \item[\bf{iii)}]Hence determine the maximum volume of the box  \end{itemize} \vfill  \begin{multicols}{2} \textbf{Solution}\\  $\begin{aligned} \text{(i)}\quad SA &=3 x^{2}+2 x y+6 x y \\ &=3 x^{2}+8 x y \\ \therefore 3 x^{2} &+8 x y=120 \\ & 8 x y=120-3 x^{2} \\ & \therefore y=\frac{120-3 x^{2}}{8 x} \end{aligned}$\\  $\begin{aligned}\text{(ii)}\quad V &=3 x \times x \times y \\ &=3 x^{2} \times \frac{120-3 x^{2}}{8 x} \\ &=\frac{3 x}{8} \times 3\left(40-x^{2}\right) \\ &=\frac{9 x}{8}\left(40-x^{2}\right)\\ &=9 x\left(5-\frac{x^{2}}{8}\right) \end{aligned}$\\  \columnbreak  $\begin{aligned}\text{(iii)}\quad V &=45 x-\frac{9 x^{3}}{8} \\ V^{\prime} &=45-\frac{27 x^{2}}{8} \\ V^{\prime \prime} &=-\frac{54 x}{8} \rightarrow \max (x>0) \\ \text { Let}\ V^{\prime} &=0 \quad x^{2}=\frac{45 \times 8}{27} \rightarrow x=\sqrt{\frac{40}{3}} \\ y &=\frac{120-3 \times \frac{40}{3}}{8 \sqrt{\frac{40}{3}}} \\ &=10 \times \sqrt{\frac{3}{40}} \\ V &=3 \times \frac{40}{3} \times 10 \sqrt{\frac{3}{40}} \\ &=20 \sqrt{30}\mathrm{~cm}^{3} \end{aligned}$\\  \end{multicols}

Create account

I am..

Please enter your details

I agree with your terms of service




Videos

Videos relating to Applications of Maxima and Minima.

  • Applications of Maxima and Minima - Video - Optimization Problem 1

    You must be logged in to access this resource
  • Applications of Maxima and Minima - Video - Optimization Problem 2

    You must be logged in to access this resource

Plans & Pricing

With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.

  • Teachers Tutors
    Features
    Free
    Pro
    All Content
    All courses, all topics
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Quizbuilder
     
    Class Results
     
    Student Results
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions
  • Awesome Students
    Features
    Free
    Pro
    Content
    Any course, any topic
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Basic Results
     
    Analytics
     
    Study Recommendations
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions