NSW Y12 Maths - Extension 2 Integration Applications

Resources for Applications

  • Questions

    17

    With Worked Solution
    Click Here
  • Video Tutorials

    4


    Click Here
  • HSC Questions

    5

    With Worked Solution
    Click Here

Applications Theory

Applications - Integration methods can be applied to finding particular solutions to differential equations, determine areas of regions bounded by curves and volumes of solids when parts of curves are rotated about \(x\) or \(y\) axes.\\  \begin{multicols}{2}  \textbf{Example 1}\\ %35340 Find the particular solution of \(\dfrac{{dy}}{{dx}} = {e^{ - x}}\cos x\) given that \(y=\dfrac{1}{2}\) when \(x=0\) \\ \textbf{Example 1 solution}\\ $\begin{aligned} &\frac{d y}{d x}=e^{-x} \cos x \\&\therefore y=\int e^{-x} \cos x d x \\&\int u d v=u v-\int v d u \\&u=e^{-x} \quad d v=\cos x \\&d u=-e^{-x} \quad v=\sin x \\&y=e^{-x} \sin x+\int e^{-x} \sin x d x \\ \text{Let }I&=\int e^{-x} \sin x d x \\&u=e^{-x} \quad\quad\quad d v=\sin x \\&d u=-e^{-x} \quad\quad v =-\cos x \\&I=-e^{-x} \cos x-\int e^{-x} \cos x d x \end{aligned}$\\ $\begin{aligned}I&=-e^{-x} \cos x-y \\y&=e^{-x} \sin x+I \\&=e^{-x} \sin x-e^{-x} \cos x-y \\2 y&=e^{-x}(\sin x-\cos x) \\y&=\frac{e^{-x}}{2}(\sin x-\cos x)+c \\&\text { when } x=0, y=\frac{1}{2} \end{aligned}$\\ $\begin{aligned} \qquad\frac{1}{2} &=\frac{1}{2}(0-1)+c \rightarrow \therefore c=1 \\\therefore y &=\frac{e^{-x}}{2}(\sin x-\cos )+1\end{aligned}$\\  \columnbreak  \textbf{Example 2}\\ %35341 Find the area of the region bounded by the curve \(y=\sin ^{-1}x\), the \(x\)-axis and the lines \(x=\dfrac{-1}{2}\) and \(x=\dfrac{1}{2}\) \\  \textbf{Example 2 solution}\\ $\begin{aligned} &y=\sin ^{-1} x \text { is an odd function } \\&\therefore \quad \text { Area }=2 \int_{0}^{\frac{1}{2}} \sin ^{-1} x d x \\&\int u d v=u v-\int v d u \\&\quad u=\sin ^{-1} x\qquad d v=1 \\&\quad du=\frac{1}{\sqrt{1-x^{2}}} \quad v=x \end{aligned}$\\  $\begin{aligned}\text { Area }=& 2 \times \frac{\pi}{12}-2 \int_{0}^{\frac{1}{2}} x\left(1-x^{2}\right)^{-\frac{1}{2}} d x \\=& \frac{\pi}{6}+\int_{0}^{\frac{1}{2}}-2 x\left(1-x^{2}\right)^{-\frac{1}{2}} d x \\=& \frac{\pi}{6}+2\left[\sqrt{1-x^{2}}\right]_{0}^{\frac{1}{2}} \\=& \frac{\pi}{6}+\sqrt{3}-2\end{aligned}$\\  \end{multicols}

Create account

I am..

Please enter your details

I agree with your terms of service




Videos

Videos relating to Applications.

  • Applications - Video 1

  • Applications - Video 2

  • Applications - Video 3

  • Applications - Video 4

Plans & Pricing

With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.

  • Teachers Tutors
    Features
    Free
    Pro
    All Content
    All courses, all topics
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Quizbuilder
     
    Class Results
     
    Student Results
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions
  • Awesome Students
    Features
    Free
    Pro
    Content
    Any course, any topic
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Basic Results
     
    Analytics
     
    Study Recommendations
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions

Books / e-books

🧮 NSW Year 12 Extension 2 โ€“ Complex Numbers

๐Ÿ‘‰ Click the button below to download your free ebook and experience the Class Mathematics difference.