NSW Y12 Maths - Extension 1 Vectors Vectors in Component Form

Resources for Vectors in Component Form

  • Questions

    11

    With Worked Solution
    Click Here
  • Video Tutorials

    1


    Click Here
  • HSC Questions

    1

    With Worked Solution
    Click Here

Vectors in Component Form Theory

The unit vector in the direction $\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a} $ is denoted $\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{\hat{a}}$ where $\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{\hat{a}}$ \(=\dfrac{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a} }{|\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a} |}\).\\  The component form of the vector $\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a} $ is $\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a} $\(=x i+y j\) which is equivalent to the column vector \(a=\left(\begin{array}{l}x \\ y\end{array}\right)\)\\  The magnitude of the vector $\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a} $\(=x i+y i\) is \(|\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}|=\sqrt{x^2+y^2}\)  Addition of vectors in component form if \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}=x_1 i+y_1 j\) and \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b}=x_2 i+y_2 j\) then \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}+\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b}=\left(x_1+x_2\right) u+\left(y_1+y_2\right) j\)\\  Subtraction of vectors in component form if \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}=x_1 i+y_1 j\) and \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b}=x_2 i+y_2 j\) then \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}-\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b}=\left(x_1-x_2\right) i+\left(y_1-y_2\right) j\)\\  Scalar multiplication of vectors in component form if \(a=x i+y j\) then \(k a=k x i+k y j\)  \begin{multicols}{2} \textbf{Relative position vectors}  \begin{center} \resizebox{0.3\textwidth}{!}{ \begin{tikzpicture} \draw[step=1cm, line width=0.2mm, black!40!white] (-5,-5) grid (5,5); \draw [draw=black] (-5,-5) rectangle (5,5); \draw[latex-latex,line width=0.5mm] (-5.5,0) -- (5.5,0) node[right]{\Large\(x\)}; \draw[latex-latex,line width=0.5mm] (0,-5.5) -- (0,5.5)node[above]{\Large\(y\)}; \foreach \x in {-5,-4,-3,-2,-1,1,2,3,4,5} \draw[thin] (\x,3pt )--(\x, -3pt ) node[anchor=north]{\Large\(\x\)}; \foreach \y in {-5,-4,-3,-2,-1,1,2,3,4,5} \draw[thin] (3pt, \y )--(-3pt, \y) node[anchor=east]{\Large\(\y\)}; \coordinate [label=below left:\Large$\mathbf{O}$   ] (O) at (0,0);   \coordinate [   label=above:\Large$\mathbf{A}$   ] (A) at (2,3);   \coordinate [   label=below:\Large$\mathbf{B}$   ] (B) at (3,-2);      \draw[line width=2pt]    (O)--(A)--(B)--cycle;  \path[decoration={markings, mark=at position 1 with {\arrow{latex[scale=4.5]}}}, postaction=decorate,line width=3pt] (O)--(A);  \path[decoration={markings, mark=at position 1 with {\arrow{latex[scale=4.5]}}}, postaction=decorate,line width=3pt] (O)--(B);   \path[decoration={markings, mark=at position 1 with {\arrow{latex[scale=4.5]}}}, postaction=decorate,line width=3pt] (B)--(A); \end{tikzpicture} } %\includegraphics[width=0.3\textwidth]{13ef2623-6326-470b-85f2-84fd73b74083} \end{center}  \columnbreak The position vector of A relative to \(B\) is \(\overrightarrow{A B}\)\\  $\begin{aligned} & \overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B} \\ & \overrightarrow{O A}=2 i+3j, \overrightarrow{O B}=3 i-2 j \\ & \therefore \overrightarrow{A B}=-\overrightarrow{O A}+\overrightarrow{O B} \\ &=-2i-3j+3i-2j \\ &=i-5j \end{aligned}$\\  \end{multicols}  \textbf{Parallel vectors}\\  If \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b}=k \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}\) then $\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b}$ is parallel to \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}\).\\  Unit vectors in component form  $\begin{aligned} \hat{a} & =\dfrac{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}}{|\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}|} \\ \text { If } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a} & =x i+y j \\ \text { then } \hat{a} & =\dfrac{x i+y j}{\sqrt{x^2+y^2}} \\ \text { OR } \hat{a} & =\dfrac{1}{\sqrt{x^2+y^2}}(x i+y j) \end{aligned}$\\ \textbf{Example 1}\\ For the position vectors \(\overrightarrow{O M}=3 i-6 j\) and \(\overrightarrow{O N}=-3 i+6j\),  what is the value of \(|\overrightarrow{M N}|\)\\  \textbf{Example 1 solution}\\ $\begin{aligned} \overrightarrow{M N} & =\overrightarrow{M O}+\overrightarrow{O N} \\ & =-(3 i-6 i)+(-3 i+6 j) \\ & =-6 i+12 j \\ |\overrightarrow{M N}| & =\sqrt{36+144} \\ & =6 \sqrt{5} . \end{aligned}$\\  \textbf{Example 2}\\ What is the unit vector in the direction \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a} =-3 i+4 j\)?\\  \textbf{Example 2 solution}\\ $\begin{aligned} & \hat{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}}=-\frac{3 i+4 j}{\sqrt{9+16}} \\ & \hat{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}}=\frac{1}{5}(-3 i+4 j) \end{aligned}$\\  \textbf{Example 3}\\ Given \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}=-10 i+23 j\) and \(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b}=5 i+18 j\) find the value of \(k\) so the vector \(k \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}+4 \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b}\) is parallel to the \(y\)-axis.\\  \textbf{Example 3 solution}\\ $\begin{aligned}  k \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{a}+4 \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b}&=k(-10 i+23 j)+4(5 i+18 j) \\ & =-10 k i+23 k j+20 i+72 j \\ & =(20-10 k) i+(72+23 k) j \\ \text { Parallel to } y \text {-axis } &\therefore 20-10 k=0 \\ & \therefore k=2 \end{aligned}$\\

Create account

I am..

Please enter your details

I agree with your terms of service




Videos

Videos relating to Vectors in Component Form.

  • Vectors in Component Form - Video - Vectors in Component Form

    You must be logged in to access this resource

Plans & Pricing

With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.

  • Teachers Tutors
    Features
    Free
    Pro
    All Content
    All courses, all topics
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Quizbuilder
     
    Class Results
     
    Student Results
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions
  • Awesome Students
    Features
    Free
    Pro
    Content
    Any course, any topic
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Basic Results
     
    Analytics
     
    Study Recommendations
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions

Books / e-books

Course Book

Purchase the course book. This book either comes as a physical book or it can be purchased as an e-book. 


Topic Books

You may choose to purchase the individual topic book from the main coursebook. These only come as e-books. 

 

NSW Year 12 Maths Extension 1 - Trig Equations

Buy

NSW Year 12 Maths Extension 1 - Proof

Buy

NSW Year 12 Maths Extension 1 -Vectors

Buy

 

 

NSW Year 12 Maths Extension 1 - Calculus

Buy

NSW Year 12 Maths Extension 1 -Differential Equations

Buy

NSW Year 12 Maths Extension 1 -Projectile Motion

Buy

 

 

NSW Year 12 Maths Extension 1 -Binomial Distribution

Buy