NSW Y12 Maths - Extension 1 Projectile Motion Equation of Path

Resources for Equation of Path

  • Questions

    11

    With Worked Solution
    Click Here
  • Video Tutorials

    1


    Click Here

Equation of Path Theory

Changing from the parametric form of a projectiles trajectory \(v(t)=V t \cos \theta \,i+\left(V t \sin \theta-\frac{1}{2} g t^2\right) j\)  to the cartesian form \(x=V t \cos \theta \quad y=V t \sin \theta-\frac{1}{2} g t^2.\)\\[4pt] Let \(t=\dfrac{x}{V \cos \theta}\) and then substitute into \(y=V t \sin \theta-\dfrac{1}{2} g t^2\). The equation is \( y=x \tan \theta-\dfrac{g}{2 V^2} x^2 \sec ^2 \theta \text {. } \)\\  \textbf{Example}\\ %30733 A body is projected so that on its upward path it passes through a point situated \(x_1\) metres horizontally and \(h\) metres vertically from the point of projection. The range is \(R\) metres and the angle of projection is \(\alpha\). The position of the particle is given by \(x = Vt\cos\alpha \qquad y = Vt\sin\alpha -\frac{1}{2}gt^2.\)\\ Where \(t\) is time, in seconds, after firing, and \(g\) is the acceleration due to gravity. \begin{center} \resizebox{0.5\textwidth}{!}{ \begin{tikzpicture}  \def\angle{50}  % starting angle \def\range{10}  % horizontal range \def\height{0}  % height  \draw[-latex,line width=2pt] (0,0) -- (\range+2,0) node(X)[right] {\Large$x$}; \draw[-latex,line width=2pt] (0,0) -- (0,\height+4) node(Y)[above] {\Large$y$};  \draw[line width=2pt,->] (0,-1) -- (\range,-1) node[draw=gray!10!white,midway,rectangle,fill=gray!10!white] {\Large $R$}; \draw[line width=2pt,->] (0,-0.5) -- (\range-2,-0.5) node[draw=gray!10!white,midway,rectangle,fill=gray!10!white] {\Large$\displaystyle x_1$};  \def\v0{10}  % initial velocity \def\g{9.8}  % acceleration due to gravity  \def\tflight{2*\v0*sin(\angle)/\g}  % time of flight \def\xmax{\v0*\tflight*cos(\angle)}  % horizontal range   \draw[line width=2pt,dashed, samples=200, smooth,domain=0:\xmax] plot ({\x},{\height+\v0*sin(\angle)*(\x/\v0/cos(\angle))-0.5*\g*(\x/\v0/cos(\angle))^2}) node(G) {};  \draw[line width=2pt,dashed] (\range-2,0)--(\range-2,2) node[midway,left] {\Large $h$} node[above=5pt] {\Large $\alpha$};  \draw[fill=black] (\range-2,1.97) circle (0.12); \coordinate[label=above left:\Large$O$] (O) at (0,0); \coordinate (A) at (1,1); \pic [draw=black,line width=1pt,angle radius=0.9cm,angle eccentricity=1.5,"\Large$\alpha$"] {angle=X--O--A}; \end{tikzpicture} }  %\includegraphics[width=0.35\textwidth]{e7a2bc50-1040-4649-9126-8623e92d9e08} \end{center} \begin{itemize}[nosep] \item[\bf{i)}]Show that the path of the trajectory is \(y = x\tan\alpha - \dfrac{gx^2}{2V^2\cos^2\alpha}.\) \item[\bf{ii)}]Show that \(V^2\cos^2\alpha = \dfrac{gR}{2\tan\alpha}.\) \item[\bf{iii)}]Show that \(\tan\alpha = \dfrac{Rh}{x_1(R-x_1)}.\) \end{itemize} \begin{multicols}{2} \textbf{Solution}\\ \textbf{i)} \; $\begin{aligned}[t]x &= Vt\cos\alpha \Rightarrow t = \frac{x}{V\cos\alpha}\\ \end{aligned}$\\ $\begin{aligned} y &= (V\sin\alpha)t - \frac{1}{2}gt^2\\&= (V\sin\alpha)\frac{x}{V\cos\alpha} - \frac{1}{2}g\frac{x^2}{V^2\cos^2\alpha}\\ \end{aligned}$\\ $\begin{aligned} \therefore y &= x\tan\alpha - \frac{gx^2}{2V^2\cos^2\alpha}.\end{aligned}$ \\ \\ \textbf{ii)}\; When \(y = 0\) and \(x = R\),\\ \(R\tan\alpha - \dfrac{gR^2}{2V^2\cos^2\alpha} = 0\)\\ $\begin{aligned}\frac{gR^2}{2V^2\cos^2\alpha} &= R\tan\alpha\\\frac{2V^2\cos^2\alpha}{gR^2} &= \frac{1}{R\tan\alpha}\\ \end{aligned}$\\ $\begin{aligned} V^2\cos^2\alpha &= \frac{gR^2}{2R\tan\alpha}\\\therefore V^2\cos^2\alpha &= \frac{gR}{2\tan\alpha}\end{aligned}$ \\ \\ \textbf{iii)} When \(x = x_1\) and \(y = h\),\\ $\begin{aligned}h &= x_1\tan\alpha - \frac{g{x_1}^2}{2V^2\cos^2\alpha}\\&= x_1\tan\alpha - g{x_1}^2\left(2\times\frac{gR}{2\tan\alpha}\right)^{-1}\\&= x_1\tan\alpha - \frac{{x_1}^2\tan\alpha}{R}\\ \end{aligned}$\\ $\begin{aligned} Rh &= x_1R\tan\alpha-{x_1}^2\tan\alpha\\Rh &= \tan\alpha(x_1R-{x_1}^2)\\\therefore \tan\alpha &= \frac{Rh}{x_1(R-x_1)}\end{aligned}$ \\  \end{multicols}

Create account

I am..

Please enter your details

I agree with your terms of service




Videos

Videos relating to Equation of Path.

  • Equation of Path - Video - Projectiles - Cartesian equation of trajectory

    You must be logged in to access this resource

Plans & Pricing

With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.

  • Teachers Tutors
    Features
    Free
    Pro
    All Content
    All courses, all topics
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Quizbuilder
     
    Class Results
     
    Student Results
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions
  • Awesome Students
    Features
    Free
    Pro
    Content
    Any course, any topic
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Basic Results
     
    Analytics
     
    Study Recommendations
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions

Books / e-books

Course Book

Purchase the course book. This book either comes as a physical book or it can be purchased as an e-book. 


Topic Books

You may choose to purchase the individual topic book from the main coursebook. These only come as e-books. 

 

NSW Year 12 Maths Extension 1 - Trig Equations

Buy

NSW Year 12 Maths Extension 1 - Proof

Buy

NSW Year 12 Maths Extension 1 -Vectors

Buy

 

 

NSW Year 12 Maths Extension 1 - Calculus

Buy

NSW Year 12 Maths Extension 1 -Differential Equations

Buy

NSW Year 12 Maths Extension 1 -Projectile Motion

Buy

 

 

NSW Year 12 Maths Extension 1 -Binomial Distribution

Buy