NSW Y8 Maths Volume Volume of Composite Cylinders

Resources for Volume of Composite Cylinders

  • Questions

    10

    With Worked Solution
    Click Here
  • Video Tutorials

    1


    Click Here

Volume of Composite Cylinders Theory

\begin{multicols}{2} \textbf{Example 1}\\ Find the exact volume of the composite solid.\\ \begin{center} \begin{tikzpicture}[scale=0.3,line width=1pt] \begin{scope}[shift=(left:6.2)] \coordinate[label=left:] (l) at (-90:10); \end{scope} \draw (left:6.2) edge (l); \begin{scope}[shift=(right:6.2)] \coordinate[label=left:] (r) at (-90:10); \end{scope} \draw (right:6.2) edge (r) node[right,yshift=-2cm] {\scriptsize 10 cm}; \draw[out=240,in=-60,looseness=0.5] (r) to (l); \draw[out=-240,in=60,looseness=0.5,dashed] (r) to (l); \draw (0,0) circle (2pt); \draw[] (0,0)--(60:3.2) node[right,pos=0.7] {\scriptsize 6 cm}; \draw[] (0,0)--(left:4) node[below=-1.5pt,pos=0.5] {\scriptsize 4 cm}; \draw (0,0) circle [x radius=6.2cm, y radius=2.8cm]; \draw (0,0) circle [x radius=4cm, y radius=1.5cm]; \end{tikzpicture} \end{center}  \textbf{Example 1 solution}\\ \(\begin{aligned} \text { Volume of small cylinder } & =\pi \times 4^2 \times 10 \\ & =160 \pi \text{ cm}^3 \\ \text { Volume of large cylinder } & =\pi \times 6^2 \times 10 \\ & =360 \pi \text{ cm}^3 \end{aligned}\)\\ \(\begin{aligned} \therefore \text { Volume of soled } & =360 \pi-160 \pi \\ & =200 \pi \text{ cm}^3 \end{aligned}\)   \columnbreak \textbf{Example 2}\\ Find the exact volume of the composite solid.\\ \begin{center} \begin{tikzpicture}[scale=0.4,line width=1pt] \begin{scope}[shift=(left:6.2)] \coordinate[label=left:] (l) at (-90:4); \end{scope} \draw (left:6.2) edge (l); \begin{scope}[shift=(right:6.2)] \coordinate[label=left:] (r) at (-90:4); \end{scope} \draw (right:6.2) edge (r); \draw[out=240,in=-60,looseness=0.5] (r) to (l); \draw (0,0) circle [x radius=6.2cm, y radius=2cm];  %small cylinder \coordinate[label=left:] (u) at (90:4); \begin{scope}[shift=(u)] \coordinate[label=left:] (v) at (left:3); \end{scope} \begin{scope}[shift=(u)] \coordinate[label=left:] (w) at (right:3); \end{scope} \begin{scope}[shift=(v)] \coordinate[label=left:] (l1) at (-90:4); \end{scope} \draw (v) edge (l1); \begin{scope}[shift=(w)] \coordinate[label=left:] (r1) at (-90:4); \end{scope} \draw (w) edge (r1); \draw[out=260,in=-80,looseness=0.5] (l1) to (r1); \draw (u) circle [x radius=3cm, y radius=1cm]; \path (r)--(right:6.2) node[right,midway] {4cm}; \path (w)--(r1) node[right,pos=0.4] {4cm}; \draw (u)--(w) node[above=10pt,pos=0.35] {3cm}; \draw[fill=black] (u) circle (3pt); \begin{scope}[shift=(-90:6)] \draw[|-|] (left:6.2)--(right:6.2) node[below,pos=0.5] {8cm}; \end{scope} \end{tikzpicture}     \end{center}  \textbf{Example 2 solution}\\ \(\begin{aligned} \text { Volume of small cylinder } & =\pi \times 3^2 \times 4 \\ & =36 \pi \text{ cm}^3  \end{aligned}\)\\ \(\begin{aligned} \text { Volume of large cylinder } & =\pi \times 4^2 \times 4 \\ & =64 \pi \text{ cm}^3  \end{aligned}\)\\ \(\begin{aligned} \therefore \text { Volume of solid } & =36 \pi+64 \pi \\ & =100 \pi \text{ cm}^3 \end{aligned}\) \end{multicols}

Create account

I am..

Please enter your details

I agree with your terms of service




Videos

Videos relating to Volume of Composite Cylinders.

  • Volume of Composite Cylinders - Video - Volume of Composite Cylinders 1

    You must be logged in to access this resource

Plans & Pricing

With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.

  • Teachers Tutors
    Features
    Free
    Pro
    All Content
    All courses, all topics
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Quizbuilder
     
    Class Results
     
    Student Results
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions
  • Awesome Students
    Features
    Free
    Pro
    Content
    Any course, any topic
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Basic Results
     
    Analytics
     
    Study Recommendations
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions