Resources for Properties of Quadrilaterals
-
Questions
10
With Worked SolutionClick Here -
Video Tutorials
2
Click Here
Properties of Quadrilaterals Theory
![\begin{center} \renewcommand{\arraystretch}{2} \begin{tabular}{|@{}c|c|p{10.2cm}|} \hline \textbf{ Shape } & \textbf{ Name } & \multicolumn{1}{c|}{ \textbf{ Description }}\\[3pt] \hline \begin{tabular}{c} \\[-20pt] \begin{tikzpicture}[scale=0.7] \coordinate (O) at (0,0); \coordinate (A) at (45:2cm); \coordinate (B) at (-45:2cm); \coordinate (C) at (right:5cm); \draw[line width=1pt] (O)--(A)node[midway,rotate=-45]{\Large -}--(C)node[midway,rotate=45]{=} --(B)node[midway,rotate=-45]{=}--(O)node[midway,rotate=45]{\Large -}; \draw[line width=1pt,densely dashed] (A)--(B); \draw[line width=1pt,densely dashed] (O)--(C); \end{tikzpicture} \end{tabular} & Kite & \begin{tabular}{p{10cm}} A Kite has one axis of symmetry.\newline The diagonals of a kite intersect at right angles. \end{tabular}\\[3pt] \hline \begin{tabular}{c} \\[-20pt] \begin{tikzpicture}[scale=0.7] \coordinate (O) at (0,0); \coordinate (A) at (60:2cm); \coordinate (B) at (right:3cm); \begin{scope}[shift=(B)] \coordinate (C) at (60:2cm); \end{scope} \draw[line width=1pt] (O)--(B)node[midway,rotate=90]{}--(C)node[midway]{ }--(A)node[midway,rotate=90]{}--(O)node[midway]{}; \path (O)--(B) node[midway,sloped] {\(>\)}; \path (A)--(C) node[midway,sloped] {\(>\)}; \path (O)--(A) node[pos=0.7,sloped] {\(>\)}; \path (B)--(C) node[pos=0.7,sloped] {\(>\)}; \path (O)--(A) node[pos=0.8,sloped] {\(>\)}; \path (B)--(C) node[pos=0.8,sloped] {\(>\)}; \draw[line width=1pt,densely dashed] (A)--(B); \draw[line width=1pt,densely dashed] (O)--(C); \end{tikzpicture} \end{tabular} & Parallelogram & \begin{tabular}{p{10cm}} A parallelogram has no axis of symmetry.\newline The diagonals of a parallelogram bisect each other.\newline Opposite angles of a parallelogram are equal. \end{tabular}\\[3pt] \hline \begin{tabular}{c} \\[-20pt] \begin{tikzpicture}[scale=0.8] \coordinate (O) at (0,0); \coordinate (A) at (90:2cm); \coordinate (B) at (right:3.5cm); \begin{scope}[shift=(B)] \coordinate (C) at (90:2cm); \end{scope} \draw[line width=1pt] (O)--(B)node[midway,rotate=90]{=}--(C)node[midway]{\Large -}--(A)node[midway,rotate=90]{=}--(O)node[midway]{\Large -}; \path (O)--(B) node[pos=0.7] {>}; \path (A)--(C) node[pos=0.7] {>}; \path (O)--(A) node[pos=0.7,rotate=90] {>}; \path (B)--(C) node[pos=0.7,rotate=90] {>}; \path (O)--(A) node[pos=0.8,rotate=90] {>}; \path (B)--(C) node[pos=0.8,rotate=90] {>}; \draw[line width=1pt,densely dashed] (A)--(B); \draw[line width=1pt,densely dashed] (O)--(C); \pic [draw=black,line width=1pt,angle radius=0.3cm,angle eccentricity=1.6,""] {right angle=B--O--A}; \end{tikzpicture} \end{tabular} & Rectangle & \begin{tabular}{p{10cm}} A rectangle has two axes of symmetry.\newline It has all the properties of a parallelogram.\newline The diagonals of a rectangle are equal. \end{tabular}\\[3pt] \hline \begin{tabular}{c} \\[-20pt] \begin{tikzpicture}[scale=0.7] \coordinate (O) at (0,0); \coordinate (A) at (70:3cm); \coordinate (B) at (right:3cm); \begin{scope}[shift=(B)] \coordinate (C) at (70:3cm); \end{scope} \draw[line width=1pt] (O)--(B)node[midway,rotate=90]{\Large -}--(C)node[midway]{\Large -}--(A)node[midway,rotate=90]{\Large -}--(O)node[midway]{\Large -}; \path (O)--(B) node[pos=0.7] {>}; \path (A)--(C) node[pos=0.7] {>}; \path (O)--(A) node[pos=0.7,rotate=70] {>}; \path (B)--(C) node[pos=0.7,rotate=70] {>}; \path (O)--(A) node[pos=0.8,rotate=70] {>}; \path (B)--(C) node[pos=0.8,rotate=70] {>}; \draw[line width=1pt,densely dashed] (A)--(B); \draw[line width=1pt,densely dashed] (O)--(C); \end{tikzpicture} \end{tabular} & Rhombus & \begin{tabular}{p{10cm}} A rhombus has two axes of symmetry.\newline It has all the properties of a parallelogram.\newline The diagonals of a rhombus intersect at right angles.\newline The diagonals bisect the angles through which they pass. \end{tabular}\\[3pt] \hline \begin{tabular}{c} \\[-20pt] \begin{tikzpicture}[scale=0.7] \coordinate (O) at (0,0); \coordinate (A) at (90:3cm); \coordinate (B) at (right:3cm); \begin{scope}[shift=(B)] \coordinate (C) at (90:3cm); \end{scope} \draw[line width=1pt] (O)--(B)node[midway,rotate=90]{\Large -}--(C)node[midway]{\Large -}--(A)node[midway,rotate=90]{\Large -}--(O)node[midway]{\Large -}; \path (O)--(B) node[pos=0.7] {>}; \path (A)--(C) node[pos=0.7] {>}; \path (O)--(A) node[pos=0.7,rotate=90] {>}; \path (B)--(C) node[pos=0.7,rotate=90] {>}; \path (O)--(A) node[pos=0.8,rotate=90] {>}; \path (B)--(C) node[pos=0.8,rotate=90] {>}; \draw[line width=1pt,densely dashed] (A)--(B); \draw[line width=1pt,densely dashed] (O)--(C); \pic [draw=black,line width=1pt,angle radius=0.3cm,angle eccentricity=1.6,""] {right angle=B--O--A}; \end{tikzpicture} \end{tabular} & Square & \begin{tabular}{p{10cm}} A square has four axes of symmetry.\newline It has all the properties of a rhombus.\newline The diagonals of a square are equal. \end{tabular}\\[3pt] \hline \end{tabular} \end{center}](/media/h1hpejhg/9216.png)