NSW Y8 Maths Geometry Classifying Quadrilaterals

Resources for Classifying Quadrilaterals

  • Questions

    10

    With Worked Solution
    Click Here
  • Video Tutorials

    2


    Click Here

Classifying Quadrilaterals Theory

A quadrilateral has 4 sides and 4 angles. \begin{center}     \begin{tikzpicture}[scale=1] \coordinate (O) at (0,0); \coordinate (A) at (70:2cm); \begin{scope}[shift=(A)] \coordinate (B) at (-10:2cm); \end{scope} \begin{scope}[shift=(B)] \coordinate (C) at (290:1.5cm); \end{scope} \draw[line width=1pt] (O)--(A)--(B)node[midway]{}--(C)--(O)node[midway]{}; \end{tikzpicture} \end{center} \hfill\linebreak \renewcommand{\arraystretch}{2} \begin{tabular}{|@{}c|c|p{10.3cm}|} \hline \textbf{ Shape } & \textbf{ Name } & \multicolumn{1}{c|}{ \textbf{ Description }}\\[3pt] \hline \begin{tabular}{c} \begin{tikzpicture}[scale=0.7] \coordinate (O) at (0,0); \coordinate (A) at (70:2cm); \begin{scope}[shift=(A)] \coordinate (B) at (right:2cm); \end{scope} \begin{scope}[shift=(B)] \coordinate (C) at (290:2cm); \end{scope} \draw[line width=1pt] (O)--(A)--(B)node[midway]{>}--(C)--(O)node[midway]{>}; \end{tikzpicture}    \end{tabular}  & Trapezium &     \begin{tabular}{p{10cm}}    A trapezium is a quadrilateral with one pair of sides parallel.      \end{tabular}\\[3pt] \hline \begin{tabular}{c} \\[-20pt] \begin{tikzpicture}[scale=0.7] \coordinate (O) at (0,0); \coordinate (A) at (45:2cm); \coordinate (B) at (-45:2cm); \coordinate (C) at (right:5cm); \draw[line width=1pt] (O)--(A)node[midway,rotate=-45]{\Large -}--(C)node[midway,rotate=45]{=} --(B)node[midway,rotate=-45]{=}--(O)node[midway,rotate=45]{\Large -}; \end{tikzpicture}    \end{tabular} & Kite & \begin{tabular}{p{10cm}} A kite is a quadrilateral with two pairs of adjacent sides equal. \end{tabular}\\[3pt] \hline \begin{tabular}{c} \\[-20pt] \begin{tikzpicture}[scale=0.7] \coordinate (O) at (0,0); \coordinate (A) at (60:2cm); \coordinate (B) at (right:3cm); \begin{scope}[shift=(B)] \coordinate (C) at (60:2cm); \end{scope} \draw[line width=1pt] (O)--(B)node[midway,rotate=90]{}--(C)node[midway]{ }--(A)node[midway,rotate=90]{}--(O)node[midway]{}; \path (O)--(B) node[midway,sloped] {\(>\)}; \path (O)--(B) node[midway,sloped,pos=0.3] {\(|\)}; \path (A)--(C) node[midway,sloped] {\(>\)}; \path (A)--(C) node[pos=0.3,sloped] {\(|\)}; \path (O)--(A) node[pos=0.7,sloped] {\(>\)}; \path (O)--(A) node[pos=0.45,rotate=-10] {\(=\)}; \path (B)--(C) node[pos=0.45,rotate=-10] {\(=\)}; \path (B)--(C) node[pos=0.7,sloped] {\(>\)}; \path (O)--(A) node[pos=0.8,sloped] {\(>\)}; \path (B)--(C) node[pos=0.8,sloped] {\(>\)}; \end{tikzpicture}    \end{tabular}  & Parallelogram & \begin{tabular}{p{10cm}} A parallelogram is a quadrilateral with opposite sides equal and parallel. \end{tabular}\\[3pt] \hline \begin{tabular}{c} \\[-20pt] \begin{tikzpicture}[scale=0.8] \coordinate (O) at (0,0); \coordinate (A) at (90:2cm); \coordinate (B) at (right:3.5cm); \begin{scope}[shift=(B)] \coordinate (C) at (90:2cm); \end{scope} \draw[line width=1pt] (O)--(B)node[midway,rotate=90]{=}--(C)node[midway]{\Large -}--(A)node[midway,rotate=90]{=}--(O)node[midway]{\Large -}; \path (O)--(B) node[pos=0.7] {>}; \path (A)--(C) node[pos=0.7] {>}; \path (O)--(A) node[pos=0.7,rotate=90] {>}; \path (B)--(C) node[pos=0.7,rotate=90] {>}; \path (O)--(A) node[pos=0.8,rotate=90] {>}; \path (B)--(C) node[pos=0.8,rotate=90] {>}; \pic [draw=black,line width=1pt,angle radius=0.3cm,angle eccentricity=1.6,""] {right angle=B--O--A}; \end{tikzpicture}    \end{tabular}  & Rectangle & \begin{tabular}{p{10cm}} A rectangle is a parallelogram with all angles equal. \end{tabular}\\[3pt] \hline \begin{tabular}{c} \\[-20pt] \begin{tikzpicture}[scale=0.7] \coordinate (O) at (0,0); \coordinate (A) at (70:3cm); \coordinate (B) at (right:3cm); \begin{scope}[shift=(B)] \coordinate (C) at (70:3cm); \end{scope} \draw[line width=1pt] (O)--(B)node[midway,rotate=90]{\Large -}--(C)node[midway]{\Large -}--(A)node[midway,rotate=90]{\Large -}--(O)node[midway]{\Large -}; \path (O)--(B) node[pos=0.7] {>}; \path (A)--(C) node[pos=0.7] {>}; \path (O)--(A) node[pos=0.7,rotate=70] {>}; \path (B)--(C) node[pos=0.7,rotate=70] {>}; \path (O)--(A) node[pos=0.8,rotate=70] {>}; \path (B)--(C) node[pos=0.8,rotate=70] {>}; \end{tikzpicture}    \end{tabular}  & Rhombus &  \begin{tabular}{p{10cm}} A rhombus is a parallelogram with all sides equal. \end{tabular}\\[3pt] \hline \begin{tabular}{c} \\[-20pt] \begin{tikzpicture}[scale=0.7] \coordinate (O) at (0,0); \coordinate (A) at (90:3cm); \coordinate (B) at (right:3cm); \begin{scope}[shift=(B)] \coordinate (C) at (90:3cm); \end{scope} \draw[line width=1pt] (O)--(B)node[midway,rotate=90]{\Large -}--(C)node[midway]{\Large -}--(A)node[midway,rotate=90]{\Large -}--(O)node[midway]{\Large -}; \path (O)--(B) node[pos=0.7] {>}; \path (A)--(C) node[pos=0.7] {>}; \path (O)--(A) node[pos=0.7,rotate=90] {>}; \path (B)--(C) node[pos=0.7,rotate=90] {>}; \path (O)--(A) node[pos=0.8,rotate=90] {>}; \path (B)--(C) node[pos=0.8,rotate=90] {>}; \pic [draw=black,line width=1pt,angle radius=0.3cm,angle eccentricity=1.6,""] {right angle=B--O--A}; \end{tikzpicture}    \end{tabular}  & Square &  \begin{tabular}{p{10cm}} A square is a rhombus with all angles equal. \end{tabular}\\[3pt] \hline \end{tabular}

Create account

I am..

Please enter your details

I agree with your terms of service




Videos

Videos relating to Classifying Quadrilaterals.

  • Classifying Quadrilaterals - Video - Classifying Quadrilaterals 1

    You must be logged in to access this resource
  • Classifying Quadrilaterals - Video - Classifying Quadrilaterals 2

    You must be logged in to access this resource

Plans & Pricing

With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.

  • Teachers Tutors
    Features
    Free
    Pro
    All Content
    All courses, all topics
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Quizbuilder
     
    Class Results
     
    Student Results
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions
  • Awesome Students
    Features
    Free
    Pro
    Content
    Any course, any topic
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Basic Results
     
    Analytics
     
    Study Recommendations
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions