Resources for Classifying Quadrilaterals
-
Questions
10
With Worked SolutionClick Here -
Video Tutorials
2
Click Here
Classifying Quadrilaterals Theory
![A quadrilateral has 4 sides and 4 angles. \begin{center} \begin{tikzpicture}[scale=1] \coordinate (O) at (0,0); \coordinate (A) at (70:2cm); \begin{scope}[shift=(A)] \coordinate (B) at (-10:2cm); \end{scope} \begin{scope}[shift=(B)] \coordinate (C) at (290:1.5cm); \end{scope} \draw[line width=1pt] (O)--(A)--(B)node[midway]{}--(C)--(O)node[midway]{}; \end{tikzpicture} \end{center} \hfill\linebreak \renewcommand{\arraystretch}{2} \begin{tabular}{|@{}c|c|p{10.3cm}|} \hline \textbf{ Shape } & \textbf{ Name } & \multicolumn{1}{c|}{ \textbf{ Description }}\\[3pt] \hline \begin{tabular}{c} \begin{tikzpicture}[scale=0.7] \coordinate (O) at (0,0); \coordinate (A) at (70:2cm); \begin{scope}[shift=(A)] \coordinate (B) at (right:2cm); \end{scope} \begin{scope}[shift=(B)] \coordinate (C) at (290:2cm); \end{scope} \draw[line width=1pt] (O)--(A)--(B)node[midway]{>}--(C)--(O)node[midway]{>}; \end{tikzpicture} \end{tabular} & Trapezium & \begin{tabular}{p{10cm}} A trapezium is a quadrilateral with one pair of sides parallel. \end{tabular}\\[3pt] \hline \begin{tabular}{c} \\[-20pt] \begin{tikzpicture}[scale=0.7] \coordinate (O) at (0,0); \coordinate (A) at (45:2cm); \coordinate (B) at (-45:2cm); \coordinate (C) at (right:5cm); \draw[line width=1pt] (O)--(A)node[midway,rotate=-45]{\Large -}--(C)node[midway,rotate=45]{=} --(B)node[midway,rotate=-45]{=}--(O)node[midway,rotate=45]{\Large -}; \end{tikzpicture} \end{tabular} & Kite & \begin{tabular}{p{10cm}} A kite is a quadrilateral with two pairs of adjacent sides equal. \end{tabular}\\[3pt] \hline \begin{tabular}{c} \\[-20pt] \begin{tikzpicture}[scale=0.7] \coordinate (O) at (0,0); \coordinate (A) at (60:2cm); \coordinate (B) at (right:3cm); \begin{scope}[shift=(B)] \coordinate (C) at (60:2cm); \end{scope} \draw[line width=1pt] (O)--(B)node[midway,rotate=90]{}--(C)node[midway]{ }--(A)node[midway,rotate=90]{}--(O)node[midway]{}; \path (O)--(B) node[midway,sloped] {\(>\)}; \path (O)--(B) node[midway,sloped,pos=0.3] {\(|\)}; \path (A)--(C) node[midway,sloped] {\(>\)}; \path (A)--(C) node[pos=0.3,sloped] {\(|\)}; \path (O)--(A) node[pos=0.7,sloped] {\(>\)}; \path (O)--(A) node[pos=0.45,rotate=-10] {\(=\)}; \path (B)--(C) node[pos=0.45,rotate=-10] {\(=\)}; \path (B)--(C) node[pos=0.7,sloped] {\(>\)}; \path (O)--(A) node[pos=0.8,sloped] {\(>\)}; \path (B)--(C) node[pos=0.8,sloped] {\(>\)}; \end{tikzpicture} \end{tabular} & Parallelogram & \begin{tabular}{p{10cm}} A parallelogram is a quadrilateral with opposite sides equal and parallel. \end{tabular}\\[3pt] \hline \begin{tabular}{c} \\[-20pt] \begin{tikzpicture}[scale=0.8] \coordinate (O) at (0,0); \coordinate (A) at (90:2cm); \coordinate (B) at (right:3.5cm); \begin{scope}[shift=(B)] \coordinate (C) at (90:2cm); \end{scope} \draw[line width=1pt] (O)--(B)node[midway,rotate=90]{=}--(C)node[midway]{\Large -}--(A)node[midway,rotate=90]{=}--(O)node[midway]{\Large -}; \path (O)--(B) node[pos=0.7] {>}; \path (A)--(C) node[pos=0.7] {>}; \path (O)--(A) node[pos=0.7,rotate=90] {>}; \path (B)--(C) node[pos=0.7,rotate=90] {>}; \path (O)--(A) node[pos=0.8,rotate=90] {>}; \path (B)--(C) node[pos=0.8,rotate=90] {>}; \pic [draw=black,line width=1pt,angle radius=0.3cm,angle eccentricity=1.6,""] {right angle=B--O--A}; \end{tikzpicture} \end{tabular} & Rectangle & \begin{tabular}{p{10cm}} A rectangle is a parallelogram with all angles equal. \end{tabular}\\[3pt] \hline \begin{tabular}{c} \\[-20pt] \begin{tikzpicture}[scale=0.7] \coordinate (O) at (0,0); \coordinate (A) at (70:3cm); \coordinate (B) at (right:3cm); \begin{scope}[shift=(B)] \coordinate (C) at (70:3cm); \end{scope} \draw[line width=1pt] (O)--(B)node[midway,rotate=90]{\Large -}--(C)node[midway]{\Large -}--(A)node[midway,rotate=90]{\Large -}--(O)node[midway]{\Large -}; \path (O)--(B) node[pos=0.7] {>}; \path (A)--(C) node[pos=0.7] {>}; \path (O)--(A) node[pos=0.7,rotate=70] {>}; \path (B)--(C) node[pos=0.7,rotate=70] {>}; \path (O)--(A) node[pos=0.8,rotate=70] {>}; \path (B)--(C) node[pos=0.8,rotate=70] {>}; \end{tikzpicture} \end{tabular} & Rhombus & \begin{tabular}{p{10cm}} A rhombus is a parallelogram with all sides equal. \end{tabular}\\[3pt] \hline \begin{tabular}{c} \\[-20pt] \begin{tikzpicture}[scale=0.7] \coordinate (O) at (0,0); \coordinate (A) at (90:3cm); \coordinate (B) at (right:3cm); \begin{scope}[shift=(B)] \coordinate (C) at (90:3cm); \end{scope} \draw[line width=1pt] (O)--(B)node[midway,rotate=90]{\Large -}--(C)node[midway]{\Large -}--(A)node[midway,rotate=90]{\Large -}--(O)node[midway]{\Large -}; \path (O)--(B) node[pos=0.7] {>}; \path (A)--(C) node[pos=0.7] {>}; \path (O)--(A) node[pos=0.7,rotate=90] {>}; \path (B)--(C) node[pos=0.7,rotate=90] {>}; \path (O)--(A) node[pos=0.8,rotate=90] {>}; \path (B)--(C) node[pos=0.8,rotate=90] {>}; \pic [draw=black,line width=1pt,angle radius=0.3cm,angle eccentricity=1.6,""] {right angle=B--O--A}; \end{tikzpicture} \end{tabular} & Square & \begin{tabular}{p{10cm}} A square is a rhombus with all angles equal. \end{tabular}\\[3pt] \hline \end{tabular}](/media/0hsl14ht/9215.png)
10
With Worked Solution2
Videos relating to Classifying Quadrilaterals.
With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.