NSW Y8 Maths Geometry Angle Geometry

Resources for Angle Geometry

  • Questions

    10

    With Worked Solution
    Click Here
  • Video Tutorials

    3


    Click Here

Angle Geometry Theory

\begin{multicols}{2} Angles on a straight line add to \(180^{\circ}\).\\ They are called \textbf{supplementary angles}  \columnbreak  \begin{center} \begin{tikzpicture} \coordinate [label=above right:] (A) at (-2,0); \coordinate [label=below left:] (O) at (0,0); \coordinate [label=below left:] (O1) at (1,2); \coordinate [label=right:] (B) at (2,0); \draw[line width=1pt] (A)--(O)--(B); \draw[line width=1pt] (O)--(O1); \pic [draw=black,line width=1pt,angle radius=0.6cm,angle eccentricity=1.6,"$a$"] {angle=B--O--O1}; \pic [draw=black,line width=1pt,angle radius=0.6cm,angle eccentricity=1.6,"$b$"] {angle=O1--O--A}; \node[draw=red,line width=1pt, rectangle,align=left] at (2.5,1) {\(a+b=180^{\circ}\)}; \end{tikzpicture} \end{center} \end{multicols}  \begin{multicols}{2} Angles that add to \(90^{\circ}\) are called complementary angles.  \columnbreak \begin{center} \begin{tikzpicture} \coordinate [label=above right:] (A) at (0,2); \coordinate [label=below left:] (O) at (0,0); \coordinate [label=below left:] (O1) at (1.5,1.5); \coordinate [label=right:] (B) at (2.5,0); \draw[line width=1pt] (A)--(O)--(B); \draw[line width=1pt] (O)--(O1); \pic [draw=black,line width=1pt,angle radius=0.7cm,angle eccentricity=1.6,"$a$"] {angle=B--O--O1}; \pic [draw=black,line width=1pt,angle radius=0.7cm,angle eccentricity=1.6,"$b$"] {angle=O1--O--A}; \pic [draw=black,line width=1pt,angle radius=0.4cm,angle eccentricity=1.6,""] {right angle=B--O--A}; \node[draw=red,line width=1pt, rectangle,align=left] at (3.5,1) {\(a+b=90^{\circ}\)}; \end{tikzpicture} \end{center} \end{multicols}  \begin{multicols}{2} Angles in a revolution add to \(360^{\circ}\).  \columnbreak \begin{center} \begin{tikzpicture} \coordinate [label=above right:] (A) at (0,2); \coordinate [label=below left:] (O) at (0,0); \coordinate [label=below left:] (O1) at (1.5,1.5); \coordinate [label=right:] (B) at (-1,-1.5); \draw[line width=1pt] (A)--(O)--(B); \draw[line width=1pt] (O)--(O1); \pic [draw=black,line width=1pt,angle radius=0.7cm,angle eccentricity=1.6,"$b$"] {angle=B--O--O1}; \pic [draw=black,line width=1pt,angle radius=0.7cm,angle eccentricity=1.6,"$a$"] {angle=O1--O--A}; \pic [draw=black,line width=1pt,angle radius=0.7cm,angle eccentricity=1.6,"$c$"] {angle=A--O--B}; \node[draw=red,line width=1pt, rectangle,align=left] at (3.5,1) {\(a+b+c=360^{\circ}\)}; \end{tikzpicture} \end{center} \end{multicols}  \begin{multicols}{2} Vertically opposite angles are equal.  \columnbreak \begin{center} \begin{tikzpicture} \coordinate [label=above right:] (A) at (-1.5,1); \coordinate [label=below left:] (O) at (1.5,-1); \coordinate [label=below left:] (O1) at (1,1); \coordinate [label=below left:] (O2) at (0,0); \coordinate [label=right:] (B) at (-1,-1); \draw[line width=1pt] (A)--(O); \draw[line width=1pt] (B)--(O1); \pic [draw=black,line width=1pt,angle radius=0.5cm,angle eccentricity=1.6,"$a$"] {angle=A--O2--B}; \pic [draw=black,line width=1pt,angle radius=0.5cm,angle eccentricity=1.6,"$b$"] {angle=O--O2--O1}; \pic [draw=black,line width=1pt,angle radius=0.5cm,angle eccentricity=1.6,"$c$"] {angle=O1--O2--A}; \pic [draw=black,line width=1pt,angle radius=0.5cm,angle eccentricity=1.6,"$d$"] {angle=B--O2--O}; \node[draw=red,line width=1pt, rectangle,align=left] at (2.5,1) {\(a=b\)\\ \(c=d\)}; \end{tikzpicture} \end{center} \end{multicols}

Create account

I am..

Please enter your details

I agree with your terms of service




Videos

Videos relating to Angle Geometry.

  • Angle Geometry - Video - Vertically opposite angles

    You must be logged in to access this resource
  • Angle Geometry - Video - Angles at a Point

    You must be logged in to access this resource
  • Angle Geometry - Video - Supplementary Angles | Line and Angle Relationships

    You must be logged in to access this resource

Plans & Pricing

With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.

  • Teachers Tutors
    Features
    Free
    Pro
    All Content
    All courses, all topics
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Quizbuilder
     
    Class Results
     
    Student Results
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions
  • Awesome Students
    Features
    Free
    Pro
    Content
    Any course, any topic
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Basic Results
     
    Analytics
     
    Study Recommendations
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions