Resources for Expressing Amounts as Fractions and Percentages
-
Questions
10
With Worked SolutionClick Here -
Video Tutorials
1
Click Here
Expressing Amounts as Fractions and Percentages Theory
![\begin{multicols}{2} \textbf{Example 1}\\ In a class of 30, there are 12 boys and 18 girls.\\ \textbf{i)} what fraction are girls?\\ \textbf{ii)} what percentage are boys?\\ \textbf{Example 1 solution}\\[3pt] \textbf{i)} \(\begin{aligned}[t] \text { fraction of girls }=\frac{18}{30} & =\frac{6 \times 3}{6 \times 5} \\ & =\frac{3}{5} \end{aligned}\)\\[3pt] \textbf{ii)} \(\begin{aligned}[t] \text { percentage of boys } & =\frac{12}{30} \times 100 \% \\ & =\frac{6 \times 2}{6 \times 5} \times 100 \% \\ & =2 \times \frac{100 \%}{5} \\ & =2 \times 20 \% \\ & =40 \% \end{aligned}\) \columnbreak \textbf{Example 2}\\ Annie scored 28 out of 40 in a maths test. What percentage is this?\\ \textbf{Example 2 solution}\\[3pt] \(\begin{aligned} \frac{28}{40} & =\frac{28}{40} \times 100 \% \\ & =\frac{4 \times 7}{4 \times 10} \times 100 \% \\ & =\frac{7}{10} \times 100 \% \\ & =70 \% \end{aligned}\) \end{multicols}](/media/jp4fhm4f/7934.png)