NSW Y8 Maths Congruent Figures Proving Properties of Quadrilaterals

Resources for Proving Properties of Quadrilaterals

  • Questions

    9

    With Worked Solution
    Click Here
  • Video Tutorials

    1


    Click Here

Proving Properties of Quadrilaterals Theory

\begin{multicols}{2}  \textbf{Example 1}\\ \(A B C D\) is a trapezium \(A D=B C,\; A E=B F\) \\ and \(\angle A E D=\angle B F C=90^{\circ}\)\\ Prove that \(\angle A D E=\angle B C F\)\\ \begin{center} \begin{tikzpicture}[scale=1.2] \coordinate[label=below left:D] (O) at (0,0); \coordinate[label=above left:A] (A) at (70:2cm); \begin{scope}[shift=(A)] \coordinate[label=above right:B] (B) at (right:2cm); \end{scope} \begin{scope}[shift=(B)] \coordinate[label=below right:C] (C) at (290:2cm); \end{scope} \coordinate[label=below:E] (D) at ($(O)!(A)!(C)$); \coordinate[label=below:F] (E) at ($(O)!(B)!(C)$); \draw[line width=1pt] (O)--(A) node[midway,sloped]{\(|\)}--(B)node[midway]{>}--(C)node[midway,sloped]{\(|\)}--(O)node[midway]{>}; \draw[dashed,line width=1pt] (A)--(D); \draw[dashed,line width=1pt] (B)--(E); \pic[line width=1pt, draw, angle radius=3mm] {right angle= A--D--O}; \pic[line width=1pt, draw, angle radius=3mm] {right angle= B--E--C}; \end{tikzpicture} \end{center} \textbf{Example 1 solution}\\ In \(\triangle's \; AED,\; BFC\)\\ \(\begin{aligned} A D&=B C &&(\text{ given })\\ AE&=BF &&(\text{ given })\\ \angle AED&=\angle B F C=90^{\circ} &&(\text{ given })\\ \therefore \triangle A E D &\equiv \triangle BFC && (\text{ RHS })\\ \therefore \angle A D E&=\angle BCF \end{aligned}\)\\ (corresponding \(\angle^{\prime}\) in congruent \(\left.\triangle's\right)\)  \columnbreak \textbf{Example 2}\\ \(A B C D\) is a parallelogram\\ Prove that \(\angle A D C=\angle A B C\)\\ \begin{center} \begin{tikzpicture}[scale=1] \coordinate[label=below left:D] (O) at (0,0); \coordinate[label=above left:A] (A) at (60:1.5cm); \coordinate[label=below right:C] (B) at (right:3cm); \begin{scope}[shift=(B)] \coordinate[label=above right:B] (C) at (60:1.5cm); \end{scope} \draw[line width=1pt] (O)--(B)node[midway,rotate=90]{}--(C)node[midway]{ }--(A)node[midway,rotate=90]{}--(O)node[midway]{}--cycle; \path (O)--(B) node[midway,sloped] {\(>\)}; \path (A)--(C) node[midway,sloped] {\(>\)}; \path (O)--(A) node[pos=0.7,sloped] {\(>\)}; \path (B)--(C) node[pos=0.7,sloped] {\(>\)}; \path (O)--(A) node[pos=0.8,sloped] {\(>\)}; \path (B)--(C) node[pos=0.8,sloped] {\(>\)}; \draw[line width=1pt,densely dashed] (A)--(B); \end{tikzpicture} \end{center} \textbf{Example 2 solution}\\ \(A B C D\) is a parallelogram\\ Prove that \(\angle A D C=\angle A B C\)\\ In \(\triangle\)'s \(ADC,\; ABC\)\\ \(\begin{aligned} A D&=C B &&(\text{opposite sides of a parallelogram }=)\\ AB&=CD &&(\text{opposite sides of a parallelogram} =) \end{aligned}\)\\ \(AC\) is common\\ \(\therefore \triangle A D C \equiv \triangle A B C \text { (SSS) }\)\\ \(\therefore \angle A D C=\angle A B C\)\\ (corresponding \(\angle\) 's of congruent \(\triangle^{\prime} s\) ) \end{multicols}

Create account

I am..

Please enter your details

I agree with your terms of service




Videos

Videos relating to Proving Properties of Quadrilaterals.

  • Proving Properties of Quadrilaterals - Video - Proving Properties of Quadrilaterals

    You must be logged in to access this resource

Plans & Pricing

With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.

  • Teachers Tutors
    Features
    Free
    Pro
    All Content
    All courses, all topics
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Quizbuilder
     
    Class Results
     
    Student Results
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions
  • Awesome Students
    Features
    Free
    Pro
    Content
    Any course, any topic
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Basic Results
     
    Analytics
     
    Study Recommendations
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions