NSW Y8 Maths Area and Perimeter Parts of a Circle

Resources for Parts of a Circle

  • Questions

    11

    With Worked Solution
    Click Here
  • Video Tutorials

    2


    Click Here

Parts of a Circle Theory

\begin{tabular}{p{12cm}c} \begin{tabular}{p{12cm}} A circle has centre \(C\).\newline \(A B\) is the \textbf{diameter} as it passes through \(C\).\newline \(CD\) is a \textbf{radius}, since it starts at \(C\) and ends on the circumference.\newline The straight line \(A D\) is a \textbf{chord} the curved line (part of the \newline circumference) is an arc. \end{tabular} & \begin{tabular}{c} \begin{tikzpicture}[scale=0.9,line width=1pt] \coordinate[label=above:C] (O) at (0,0); \coordinate[label=right:B] (B) at (right:2); \coordinate[label=left:A] (A) at (left:2); \coordinate[label=below right:D] (D) at (-30:2); \draw (O) circle (2cm); \draw (A)--(B); \draw (O)--(D); \draw (A)--(D); \fill (O) circle (2.5pt); \end{tikzpicture} \end{tabular} \end{tabular} \hfill \linebreak \begin{tabular}{p{12.5cm}c} \begin{tabular}{p{12cm}} A circle has centre \(C\)\newline The area \(ACB\) contained by the radii \(A C\) and \(B C\) and the minor arc \(A B\) is the minor sector.\newline The area \(ACB\) contained by the radii \(A C\) and \(B C\) and the major arc \(AB\) is the major sector.\newline  The area contained by the chord DE and the minor arc \(DE\) is the minor segment.\newline  The area contained by the chord \(D E\) and the major arc \(DE\) is the major segment. \end{tabular} & \begin{tabular}{c} \begin{tikzpicture}[scale=0.9,line width=1pt] \coordinate[label=above:C] (O) at (0,0); \coordinate[label=right:B] (B) at (-30:2); \coordinate[label=below:A] (A) at (250:2); \coordinate[label=above left:D] (D) at (130:2); \coordinate[label=above right:E] (E) at (50:2); \draw (O) circle (2cm); \draw (A)--(O)--(B); \draw (D)--(E); \fill (O) circle (2.5pt); \end{tikzpicture} \end{tabular} \end{tabular}  \begin{multicols}{2}  \textbf{Example 1}\\ A circle has a diameter of \(6 \text{~cm}\).\\ What is the length of \(CB\)?\\ \begin{center} \begin{tikzpicture}[scale=0.7,line width=1pt] \coordinate[label=above:C] (O) at (0,0); \coordinate[label=above left:B] (B) at (150:2); \coordinate[label=right:A] (A) at (-30:2); \draw (O) circle (2cm); \draw (A)--(B); \fill (O) circle (2.5pt); \end{tikzpicture} \end{center}  \textbf{Example 1 solution}\\[3pt] \(\begin{aligned} CB & =\frac{1}{2} \times 6 \\ & =3 \text{~cm}\end{aligned}\)  \columnbreak \textbf{Example 2}\\ The area of a circle is \(16 \pi \text{ cm}^2\) and its radius is \(4 \text{~cm}\).\\ \textbf{i)} what is the area of the minor sector \(ACB\)?\\ \textbf{ii)} What is the area of the minor segment contained by the chord \(A B\) and the minion arc \(A B\)?\\ \begin{center} \begin{tikzpicture}[scale=0.8,line width=1pt] \coordinate[label=above:C] (O) at (0,0); \coordinate[label=right:B] (B) at (right:2); \coordinate[label=below:A] (A) at (270:2); \draw[line width=1.5pt] (O) circle (2cm); \draw (A)--(O)--(B)--cycle; \fill (O) circle (2.5pt); \pic [draw=black,line width=1pt,angle radius=0.3cm,angle eccentricity=1.6,""] {right angle=B--O--A}; \end{tikzpicture} \end{center}  \textbf{Example 2 solution}\\ \textbf{i)} The sector is one quarter of the circle\\ \(\begin{aligned} \therefore \text { Area } & =\frac{1}{4} \times 16 \pi =4 \pi \text{ cm}^2 \end{aligned}\)\\ \textbf{ii)}  \(\begin{aligned}[t] \text{The area of the triangle} ACB&=\frac{1}{2} \times 4 \times 4=8 \text{~cm}^2 \end{aligned}\)\\ \(\therefore\) The area of the segment \(=(4 \pi-8) \text{ cm}^2\) \end{multicols}

Create account

I am..

Please enter your details

I agree with your terms of service




Videos

Videos relating to Parts of a Circle.

  • Parts of a Circle - Video - Parts of a Circle 1

    You must be logged in to access this resource
  • Parts of a Circle - Video - Parts of a Circle 2

    You must be logged in to access this resource

Plans & Pricing

With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.

  • Teachers Tutors
    Features
    Free
    Pro
    All Content
    All courses, all topics
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Quizbuilder
     
    Class Results
     
    Student Results
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions
  • Awesome Students
    Features
    Free
    Pro
    Content
    Any course, any topic
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Basic Results
     
    Analytics
     
    Study Recommendations
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions