NSW Y8 Maths Area and Perimeter Area of Sectors

Resources for Area of Sectors

  • Questions

    11

    With Worked Solution
    Click Here
  • Video Tutorials

    2


    Click Here

Area of Sectors Theory

\begin{minipage}[c]{10cm} \begin{center} Area of a sector \(=\dfrac{\theta}{360^{\circ}} \times \pi r^2\) \end{center} \end{minipage} \begin{minipage}[c]{3cm} \begin{tikzpicture}[scale=1,line width=1pt] \coordinate[label=above:C] (O) at (0,0); \coordinate[label=below right:B] (B) at (-45:2); \coordinate[label=below left:A] (A) at (225:2); \path[fill=blue!20] (O)--(B) arc (-45:-135:2)--cycle; \draw (O)--(B) node[right,midway]{\(r\)} arc (-45:-135:2)node[below,midway]{}--(O); \fill (O) circle (2.5pt); \pic [draw=black,line width=1pt,angle radius=0.4cm,angle eccentricity=1.6,"\(\theta^{\circ}\)"] {angle=A--O--B}; \end{tikzpicture} \end{minipage}\\  \begin{multicols}{2}  \textbf{Example 1}\\ Find the exact area of a sector given that \(\theta=60^{\circ}\) and \(r=6 \text{~cm}\).\\  \textbf{Example 1 solution}\\ \(\begin{aligned} \text { Area } & =\frac{60^{\circ}}{360^{\circ}} \times \pi \times 6^2 \\ & =\frac{1}{6} \times \pi \times 6^2 \\ & =6 \pi \text{ cm}^2 \end{aligned}\)  \columnbreak \textbf{Example 2}\\ The exact area of a sector is \(24 \pi \text{ cm}^2\). The radius of the circle is \(8 \text{~cm}\). Find the angle of the sector.\\  \textbf{Example 2 solution}\\ \(\begin{aligned} \text { Area } & =\frac{\theta}{360^{\circ}} \times \pi \times r^2 \\ 24 \pi & =\frac{\theta}{360} \times \pi \times 8^2 \\ 24 & =\frac{\theta}{360} \times 64 \\ \theta & =\frac{24}{64} \times 360 \\ \theta & =\frac{3}{8} \times 360^{\circ} \\ \theta & =135^{\circ} \end{aligned}\) \end{multicols}

Create account

I am..

Please enter your details

I agree with your terms of service




Videos

Videos relating to Area of Sectors.

  • Area of Sectors - Video - Area of Sectors 1

    You must be logged in to access this resource
  • Area of Sectors - Video - Area of Sectors 2

    You must be logged in to access this resource

Plans & Pricing

With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.

  • Teachers Tutors
    Features
    Free
    Pro
    All Content
    All courses, all topics
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Quizbuilder
     
    Class Results
     
    Student Results
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions
  • Awesome Students
    Features
    Free
    Pro
    Content
    Any course, any topic
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Basic Results
     
    Analytics
     
    Study Recommendations
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions