NSW Y8 Maths Area and Perimeter Arc Lengths Problems

Resources for Arc Lengths Problems

  • Questions

    10

    With Worked Solution
    Click Here
  • Video Tutorials

    2


    Click Here

Arc Lengths Problems Theory

\begin{multicols}{2}  \textbf{Example 1}\\ Find the perimeter of the shape given that \(A B=4 \text{~cm}\) and \(BC=4 \text{~cm}\)\\ \begin{center} \begin{tikzpicture}[scale=0.7,line width=1pt] \coordinate[label=below:C] (O) at (0,0); \coordinate[label=below:B] (B) at (left:4); \coordinate[label=below:A] (A) at (left:8); \draw (O) arc (0:180:2); \draw (O) arc (0:180:4); \draw (A)--(B) node[below,midway] {4 cm}; \path (O)--(B) node[below,midway] {4 cm}; \end{tikzpicture} \end{center}  \textbf{Example 1 solution}\\ \(\begin{aligned} \text{The semicircle on } AC:\; AC&=\frac{180^{\circ}}{360^{\circ}} \times 2 \pi \times 4\\ & =\frac{1}{2} \times 2 \pi \times 4 \\ & =4 \pi \text{ cm} \end{aligned}\)\\ \(\begin{aligned} \text{The semicircle on } B C:\;B C & =\frac{180^{\circ}}{360^{\circ}} \times 2 \pi \times 2 \\ & =\frac{1}{2} \times 2 \pi \times 2 \\ & =2 \pi \text{ cm} \end{aligned}\)\\ \(\begin{aligned} \therefore \text { Perimeter } & =4+4 \pi+2 \pi . \\ & =(4+6 \pi) \text{ cm}. \end{aligned}\)  \columnbreak \textbf{Example 2}\\ Find the perimeter of the shape given that \(A C\) has a diameter of \(7 \text{~cm}\) The arc \(A B\) and the are \(B C\) have radii \(2.5 \text{~cm}\) and \(\theta=120^{\circ}\)\\ \begin{center} \begin{tikzpicture}[scale=0.4,line width=1pt] \coordinate[label=below:] (O) at (0,0); \coordinate[label=below:B] (O1) at (0,-2); \coordinate[label=right:C] (C) at (right:7); \coordinate[label=left:A] (A) at (left:7); \coordinate[label=below:E] (E) at (-4.3,-3.5); \coordinate[label=below:F] (F) at (4.5,-3.5); %\draw (E)--(O1) arc (20:140:2.5)--(E); %\draw (F)--(O1)+(right:4.35) arc (20:140:2)--(F); \draw (C) arc (0:180:7); \draw[dashed] (O)--(120:7) node[right,midway] {3.5 cm}; \draw[out=110,in=40,looseness=1] (O1) to (A); \draw[out=70,in=150,looseness=1] (O1) to (C); \draw[dashed] (A)--(E) node[left,midway]{2.5 cm}--(O1); \draw[dashed] (O1)--(F)--(C)node[right,midway]{2.5 cm}; \pic [draw=black,line width=1pt,angle radius=0.4cm,angle eccentricity=1.6,"\(120^{\circ}\)"] {angle=O1--E--A}; \pic [draw=black,line width=1pt,angle radius=0.4cm,angle eccentricity=1.6,"\(120^{\circ}\)"] {angle=C--F--O1}; \end{tikzpicture} \end{center}  \textbf{Example 2 solution}\\ The semicircle \(A C:\) \; \(\begin{aligned}[t] A C&=\frac{180^{\circ}}{360^{\circ}} \times 2 \pi \times 3.5 \\ & =\frac{1}{2} \times 7 \pi \\ & =3.5 \pi \text{ cm} \end{aligned}\)\\ The arc \(A B:\)\; \(\begin{aligned}[t]  AB&=\frac{120^{\circ}}{360^{\circ}} \times 2 \pi \times 2.5\\  & =\frac{1}{3} \times 5 \pi \\ & =\frac{5 \pi}{3} \end{aligned}\)\\ arc \(A B=\) arc \(B C\; \therefore B C=\dfrac{5 \pi}{3}\)\\ \(\begin{aligned} \therefore \text { Perimeter } & =3.5 \pi+\frac{5 \pi}{3}+\frac{5 \pi}{3} \\ & =\left(\frac{7}{2}+\frac{5}{3}+\frac{5}{3}\right) \pi=\frac{41 \pi}{6} \text{~cm} \end{aligned}\) \end{multicols}

Create account

I am..

Please enter your details

I agree with your terms of service




Videos

Videos relating to Arc Lengths Problems.

  • Arc Lengths Problems - Video - Arc Lengths Problems 1

    You must be logged in to access this resource
  • Arc Lengths Problems - Video - Arc Lengths Problems 2

    You must be logged in to access this resource

Plans & Pricing

With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.

  • Teachers Tutors
    Features
    Free
    Pro
    All Content
    All courses, all topics
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Quizbuilder
     
    Class Results
     
    Student Results
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions
  • Awesome Students
    Features
    Free
    Pro
    Content
    Any course, any topic
     
    Questions
     
    Answers
     
    Worked Solutions
    System
    Your own personal portal
     
    Basic Results
     
    Analytics
     
    Study Recommendations
    Exam Revision
    Revision by Topic
     
    Practise Exams
     
    Answers
     
    Worked Solutions