Resources for Arc Lengths
-
Questions
10
With Worked SolutionClick Here -
Video Tutorials
1
Click Here
Arc Lengths Theory
![\begin{minipage}[c]{11cm} The arc length of a circle with radius \(r\) and the angle at the centre is given by: $$ l=\frac{\theta}{360^{\circ}} \times 2 \pi r $$ \end{minipage} \quad \begin{minipage}[c]{3cm} \begin{center} \begin{tikzpicture}[scale=1,line width=1pt] \coordinate[label=above:C] (O) at (0,0); \coordinate[label=below right:B] (B) at (-45:2); \coordinate[label=below left:A] (A) at (225:2); \draw (O)--(B) node[right,midway]{\(r\)} arc (-45:-135:2)node[below,midway]{\(l\)}--(O); \fill (O) circle (2.5pt); \pic [draw=black,line width=1pt,angle radius=0.4cm,angle eccentricity=1.6,"\(\theta^{\circ}\)"] {angle=A--O--B}; \end{tikzpicture} \end{center} \end{minipage} \hfill \linebreak \begin{multicols}{2} \textbf{Example 1}\\ Find the are length \(AB\) given that the radius is \(6 \text{~cm}\) and \(\theta=120^{\circ}\).\\ \begin{center} \begin{tikzpicture}[scale=1,line width=1pt] \coordinate[label=above:C] (O) at (0,0); \coordinate[label=below right:B] (B) at (-30:2); \coordinate[label=below left:A] (A) at (210:2); \draw (O)--(B) node[above right,midway]{\(6\text{ cm}\)} arc (-30:-150:2)node[below,midway]{}--(O); \fill (O) circle (2.5pt); \pic [draw=black,line width=1pt,angle radius=0.4cm,angle eccentricity=1.6,"\(120^{\circ}\)"] {angle=A--O--B}; \end{tikzpicture} \end{center} \textbf{Example 1 solution}\\[3pt] \(\begin{aligned} l & =\frac{120^{\circ}}{360^{\circ}} \times 2 \pi \times 6 \\ & =\frac{1}{3} \times 2 \pi \times 6 \\ & =4 \pi \text{ cm}. \end{aligned}\) \columnbreak \textbf{Example 2}\\ Find the perimeter of the sector given that \(\theta=60^{\circ}\) and \(r=4 \text{~cm}\).\\ \begin{center} \begin{tikzpicture}[scale=1,line width=1pt] \coordinate[label=above:C] (O) at (0,0); \coordinate[label=below right:B] (B) at (-60:2); \coordinate[label=below left:A] (A) at (240:2); \draw (O)--(B) node[above right,midway]{\(4\text{ cm}\)} arc (-60:-120:2)node[below,midway]{}--(O); \fill (O) circle (2.5pt); \pic [draw=black,line width=1pt,angle radius=0.5cm,angle eccentricity=1.6,"\(60^{\circ}\)"] {angle=A--O--B}; \end{tikzpicture} \end{center} \textbf{Example 2 solution}\\[3pt] \(\begin{aligned} l & =\frac{60^{\circ}}{360^{\circ}} \times 2 \pi \times 4 \\ & =\frac{1}{6} \times 8 \pi \\ & =\frac{4 \pi}{3} \end{aligned}\)\\ \(\begin{aligned} \therefore \text { Perimeter } & =4+4+\frac{4 \pi}{3} \\ & =\left(8+\frac{4 \pi}{3}\right) \mathrm{cm} .\end{aligned}\) \end{multicols}](/media/k2sfycpt/32354.png)
10
With Worked Solution1
Videos relating to Arc Lengths.
With all subscriptions, you will receive the below benefits and unlock all answers and fully worked solutions.