

Use the discriminant to determine the number of intercepts for the	following parabolas i O
i) $y = x^2 + 6x + 8$	ii O
i) $y = x^2 + 6x + 9$	iii 🔿
iii) $y=x^2+6x+10$	

43354		
Question 2	PARABOLAS AND OTHER GRAPHS ${}^{-}\!\!\mathrm{lr}$ sketching parabolas using the quadratic formula	Marks (2)
Determine the turni	ng point (vertex) of the parabola $y=2x^2-4x+5$	
Question 3	PARABOLAS AND OTHER GRAPHS ${}^{-}\!\!\mathrm{lr}$ sketching parabolas using the quadratic formula	Marks (2)
Determine the coord $y = x^2 + 4x - 1$	linates of the x -intercepts (in exact form) for the parabola	

Use the discriminant to determine the number of intercepts for the following parabolas	iO
i) $y = x^2 + 6x + 8$	ii ()
ii) $y=x^2+6x+9$ iii) $y=x^2+6x+10$	iii ()

Question 7	PARABOLAS AND OTHER GRAPHS ${}^{-\!}\!$	Marks (2)
Determine the turning	g point (vertex) of the parabola $y=2x^2-4x+5$	
Question 8	PARABOLAS AND OTHER GRAPHS - $1_{ m L^{+}}$ sketching parabolas using the quadratic formula	Marks (2)
Determine the coordir	nates of the x -intercepts (in exact form) for the parabola $y=x^2+4x-1$	• 0

	QLD Y10 Sketching Parabolas Using The Quadratic Formula Rev Want answers? Use QR or code CAAB on the Class Mathematics website. Alternatively click get answers for instant access.	rision Quiz 1 Page 4 of 4
Question 9	PARABOLAS AND OTHER GRAPHS \mathbb{T}_{Γ} SKETCHING PARABOLAS USING THE QUADRATIC FORMULA	Marks (3)
Sketch the	graph of $y=2x^2-3x-2$ using the vertex and the y intercept.	
Question 1	$f 0$ PARABOLAS AND OTHER GRAPHS ${}^{-}\!\!1_{\Gamma}$ SKETCHING PARABOLAS USING THE QUADRATIC FORMULA	Marks (3)
Sketch the	graph of $y=-x^2+2x+4$ using the vertex and the y intercept.	